Computations of the Yamabe invariant
نویسندگان
چکیده
منابع مشابه
Low-dimensional surgery and the Yamabe invariant
Assume that M is a compact n-dimensional manifold and that N is obtained by surgery along a k-dimensional sphere, k ≤ n − 3. The smooth Yamabe invariants σ(M) and σ(N) satisfy σ(N) ≥ min(σ(M),Λ) for Λ > 0. We derive explicit lower bounds for Λ in dimensions where previous methods failed, namely for (n, k) ∈ {(4, 1), (5, 1), (5, 2), (9, 1), (10, 1)}. With methods from surgery theory and bordism ...
متن کاملSmooth Yamabe invariant and surgery
We prove a surgery formula for the smooth Yamabe invariant σ(M) of a compact manifold M . Assume that N is obtained from M by surgery of codimension at least 3. We prove the existence of a positive constant Λn, depending only on the dimension n of M , such that σ(N) ≥ min{σ(M),Λn}.
متن کاملRelative Yamabe invariant and c-concordant metrics
We show a surgery formula for the relative Yamabe invariant and give applications to the study of concordance classes of metrics.
متن کاملThe Yamabe invariant for non-simply connected manifolds
The Yamabe invariant is an invariant of a closed smooth manifold defined using conformal geometry and the scalar curvature. Recently, Petean showed that the Yamabe invariant is non-negative for all closed simply connected manifolds of dimension ≥ 5. We extend this to show that Yamabe invariant is non-negative for all closed manifolds of dimension ≥ 5 with fundamental group of odd order having a...
متن کاملMonotonicity of the Yamabe invariant under connect sum over the boundary
We show that the Yamabe invariant of manifolds with boundary satisfies a monotonicity property with respect to connected sums along the boundary, similar to the one in the closed case. A consequence of our result is that handlebodies have maximal invariant.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 1998
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.1998.v5.n6.a1